Ну очень мне понравился этот рассказик, особенно про гонорар адвокатов. Выудила его в инете. Конечно, вряд ли он основан  на подлинных событиях, но сама суть американской системы школьного образования и правосудия переданы довольно метко и чисто с русским юмором .

В Бруклине, в математической школе для одарённых детей шёл урок алгебры. Это был класс учеников выше среднего уровня во всех отношениях — как в смысле их возраста, так и в смысле их прогресса в освоении наук. У мальчиков начинал ломаться голос, девочки начинали брить подмышки, и все они шагнули в постижении математики так далеко, что наизусть знали таблицу умножения до четырёх. Теперь они с упоением погружались в холодные глубины алгебры. Они уже усвоили, что если a = b, то b = a, и это придавало им чувство избранности и приближения к абсолютной истине.
Учитель был полноватый, средних лет мужчина с матовой плешью, грустными бесцветными глазами и тяжёлым русским акцентом. Он страстно любил математику и надеялся, что эта страсть передастся кому-нибудь из его одарённых недоумков. Ученики почтительно называли его мистер Зайтлайн, а друзья запросто — Борька Цейтлин (о чём ученики, разумеется, не знали).
К середине урока, когда мальчикам надоело играть в морской бой, а девочкам надоело красить ногти, учитель неожиданно сказал нечто такое, что привлекло их внимание.
— Сейчас, — сказал учитель, — я вам докажу, что два равно одному.
Класс затих, и учитель, воспользовавшись паузой, добавил:
— Тот, кто найдёт ошибку в моём доказательстве, получит «А».
Класс молчал, напуганный неожиданным вызовом. В наступившей тишине раздался писклявый голос отличницы Брехман:
— Мистер Зайтлайн, по-моему, два не равно одному. Два больше.
— Правильно, — сказал учитель. — Отличное наблюдение. Два действительно больше, чем один. Но вы должны это доказать, то есть опровергнуть моё доказательство. Понятно? Итак, начнём. Для начала, предположим, что «а» равно «бэ».
Он повернулся к доске и написал: а = b.
— Откуда вы знаете? — раздался с задней парты ломающийся голос отличника Гойскера.
— Откуда я знаю что?
— Что «а» равно «бэ».
— Прекрасный вопрос, — кисло сказал учитель. — Я не знаю. Но я допустил. Если вы заметили, я сказал:предположим, что «а» равно «бэ».
— Предположим, что директора на завуча положим, — сказал отличник Рабунский, обводя класс победным взором.
Класс взорвался от хохота. Директор школы был пожилой мужчина, завуч — молодая женщина, так что класс по достоинству оценил остроту Рабунского.
Дождавшись, когда ученики успокоятся, учитель продолжал:
— Умножаем обе части уравнения на «а». Получается...
Он написал: a x a = a х b, то есть a2 = ab. Класс молчал.
— Отнимаем от обеих частей уравнения «бэ»-квадрат, — сказал учитель и написал: a2 — b2 = ab — b2. Класс молчал.
— А теперь… — сказал учитель, не в силах сдержать счастливой улыбки, — кто может сказать, что мы теперь делаем?
— Идём домой смотреть хоккей, — сказал отличник Рабунский. — Он явно был сегодня в ударе.
— Правильно, — сказал учитель. — Но не сейчас. До конца урока ещё пятнадцать минут. А пока продолжим доказательство. Что у нас в левой части уравнения? Разность квадратов члена «а» и члена «бэ», правильно? Чему равна разность квадратов? Она равна произведению суммы членов на их разность. А что в правой части? Общий множитель «бэ», который мы выносим за скобки. Преобразуем уравнение. Получается...
Он написал: (a + b) (a — b) = b (a — b).
— Понятно?
— Понятно, сказал остряк Рабунский. — Линда Брехман любит сумму членов Алана и Боба.
Класс потряс новый взрыв ликования. Учитель понял, что на этот раз не дождётся тишины. В его распоряжении оставалось шесть минут.
— Сокращаем обе части уравнения на «а» минус «бэ», — прокричал он, перекрывая ликующий гогот. — Получается...
Он написал: a + b = b.
Гогот не стихал. Учитель продолжал писать, одновременно выкрикивая:
— Так как «а» и «бэ» равны, заменяем в левой части «а» на «бэ». Получатся...
Он написал: b + b = b, то есть 2b = b.
— Сокращаем на «бэ». Получается: 2 = 1.
Последнюю строчку, стуча мелом по доске, он написал крупными цифрами и подчеркнул. Класс замолк, испуганно глядя на доску. Даже хулиган Рабунский на время притих. Учитель сказал, не скрывая своего торжества:
— Ну, кто может найти ошибку в доказательстве?
Отличница Линда Брехман подняла руку и сказала:
— Я знаю, где ошибка. Ошибка заключается в том, что на самом деле два не равно одному.
Учитель погрустнел.
— Правильно, Линда — сказал он со вздохом. — Ты это уже говорила. Конечно, они не равны. Значит, в моём доказательстве есть ошибка. И вы должны её найти.
В разговор неожиданно вмешался отличник Гойскер:
— Мистер Зайтлайн, если в доказательстве есть ошибка, зачем вы нам его показываете? Мы пришли сюда учить правильную математику, а не ошибочную.
— Замечательная мысль, — сказал учитель. — Это такое упражнение. Шутка. Если вы найдёте ошибку, вы будете знать, как её избежать в вашей дальнейшей жизни.
Прозвенел звонок, и ученики ринулись на выход. В классе осталась одна отличница Брехман.
— Мистер Зайтлайн, — сказала она, подойдя к учителю, — это очень странно, что два равно одному. Это правда шутка?
— Правда.
— А в чём ошибка вашего доказательства? В том, что на самом деле «а» и «бэ» не равны?
— Равны, равны, — сказал учитель, собирая портфель.
— Тогда в чём ошибка? Скажите по секрету, мистер Зайтлайн. Я никому не скажу, что вы мне сказали.
— Не могу, Линда. Это будет нечестно по отношению к остальным ученикам.
— Ну, пожалуйста, мистер Зайтлайн! Я же никому не скажу!
— Извини, Линда, не могу.
— Какой вы вредный! — сквозь слёзы пропищала отличница Брехман. — Я на вас пожалуюсь моему папе.
Она выскочила из класса, демонстративно хлопнув дверью.
Следующий день прошёл спокойно. Ни учитель, ни отличники не вспоминали о вчерашней коварной теореме. В конце дня учителя вызвал директор школы.
— Привет, Борис, присаживайся, — сказал он. — Слушай, что у тебя вчера произошло в классе? Мне звонили несколько обеспокоенных родителей. Они говорят, что ты травмируешь детей.
— Вчера? — переспросил учитель, пытаясь вспомнить, что такого страшного он вчера натворил. — А, да! Я им доказал, что два равно одному.
— Ты с ума сошёл! — испугался директор. — Как можно такие вещи доказывать несовершеннолетним детям! Ведь на самом деле два гораздо больше, чем один!
— Я знаю, что больше. Это была шутка. Я хотел проверить их знания основ математики.
— Ты им сказал, что это шутка?
— Сказал.
— Ну, тогда ладно, — директор с облегчением перевёл дух. — Ты смотри, будь осторожен. А то нас засудят.
Прошло ещё две недели, и опасная математическая шутка была окончательно забыта. Никто из отличников (а все ученики этой школы были отличниками) не вспомнил о ней и не попытался её разоблачить, чтобы получить «А». На третью неделю учителя снова вызвал директор школы. Он был мрачен, как похоронное бюро. Закрыв дверь кабинета, он предложил учителю сесть и швырнул перед ним письмо на плотной, палевого цвета бумаге. Письмо было из местной юридической фирмы «Оркин, Соркин и Дворкин». Оно гласило:
«Наша компания представляет интересы родителей учеников вашей школы. В связи с инцидентом, произошедшим недавно в седьмом классе на уроке математики, мы бы хотели встретиться с учителем, мистером Зайтлайном, чтобы получить его показания о вышеупомянутом инциденте. Вы можете назначить день и время встречи. Искренне ваш — А.Оркин».
Мистер Оркин явился на следующий день после окончания уроков. Его сопровождали Соркин, Дворкин и две секретарши. Интервью проходило в кабинете директора. Вопросы задавал самый молодой, мистер Дворкин. Остальные молча записывали. Для начала мистер Дворкин уточнил имя, фамилию, адрес и год рождения учителя. Затем он сказал:
— Мистер Зайтлайн, повторите, пожалуйста, что вы объявили ученикам на уроке математики пятого октября?
— Что два равно одному.
— Известно ли вам, что на самом деле два не равно одному?
— Почему вы так думаете?
— Мистер Зайтлайн, позвольте, я буду задавать вопросы. Признаёте ли вы, что преднамеренно ввели своих учеников в заблуждение?
— Я их никуда не вводил. Я просто доказал, что два равно одному.
— Каким образом вы это доказали?
Учитель взял лист бумаги и в течение минуты повторил злосчастную теорему. Под конец он лихо сократил обе части уравнения на «бэ», написал 2 = 1 и, не моргнув глазом, подчеркнул эту непристойность. Три юриста и две секретарши тщательно переписали бесстыжие выкладки учителя. Воцарилось тяжёлое молчание.
— Это шутка, — сказал учитель. — Это, как бы, упражнение. В моём доказательстве содержится ошибка, которую ученики должны были найти.
Адвокаты молчали, не глядя друг на друга.
— Я могу объяснить, в чём она заключается, — заискивающе сказал учитель.
— Не надо, — сказал мистер Дворкин. — Ученики задавали вам вопросы?
— Да. Гойскер спросил, откуда я знаю, что «а» равно «бэ».
— Что вы на это ответили?
— Что это моё предположение.
— Так. На чём оно было основано?
— Что — «оно»?
— Ваше предположение. Какие у вас были основания предполагать, что «а» равно «бэ»?
Учитель с мольбой посмотрел на директора. Директор отвернулся к окну и стал глядеть во двор, откуда неслись счастливые вопли отличников, играющих в софтбол.
— Продолжим, — сказал мистер Дворкин. — Как отреагировали ученики на ваше безосновательное предположение, за которым, как и ожидалось, последовало ошибочное доказательство?
— Рабунский сказал: предположим, что директора на завуча положим.
Директор заёрзал на стуле и сказал:
— Мои отношения с миссис Лифшиц являются чисто деловыми и основываются исключительно на интересах школы и её учащихся. Высокое качество образования, которое...
— Хорошо, — сказал мистер Дворкин. — Что ещё говорили ученики?
— Ещё Рабунский сказал, что Линда Брехман любит сумму членов Алана и Боба.
Две секретарши ниже склонились к своим блокнотам.
— Понятно, — сказал мистер Дворкин. — Реакция класса показывает, что дети были травмированы вашим безответственным доказательством. Родители учеников рассказали, что в этот день дети пришли из школы в подавленном состоянии, бледные, весь вечер плохо ели и долго не ложились спать. Многим родителям пришлось обратиться к помощи психологов и психиатров. Что вы можете на это сказать, мистер Зайтлайн?
— Что они врут, — вяло сказал учитель.
— Борис, ты с ума сошёл — сказал директор по-русски. И перейдя на английский, добавил: — Мистер Зайтлайн хотел сказать, что ученики побледнели оттого, что напряжённо думали над задачей, которую он им предложил с целью повышения их уровня знаний математики.
Мистер Дворкин хотел открыть рот, но его неожиданно перебил до сих пор молчавший мистер Соркин.
— В чём была ошибка? — спросил он, не проявляя эмоций.
— В том, — сказал учитель, заметно оживляясь, — что в шестой строчке мы сокращаем обе части уравнения на «а» минус «бэ», что, по определению, равно нулю. А на ноль делить нельзя. Ученики должны это знать.
— Что значит «нельзя»? — мистер Дворкин снова взял дело в свои руки. — Мистер Зайтлайн, мы живём в свободной стране.
— Понимаете, — сказал учитель, — есть закон, не позволяющий делить на ноль. А то получится бесконечность или вообще чёрт знает что.
— Закон? — переспросил мистер Дворкин. — Это закон штатный или федеральный? Он принят конгрессом? Вы знаете его номер и дату вступления в силу?
— Нет, но...
— Мистер Зайтлайн, — снисходительно сказал мистер Дворкин. — Можете не объяснять. Мы с мистером Оркиным и мистером Соркиным разбираемся в законах.
На этом интервью закончилось. Мистеры Оркин, Соркин и Дворкин с двумя секретаршами покинули кабинет. Директор сказал:
— Борис, ты понимаешь, что ты наделал?
— Я могу покаяться, если надо, — сказал учитель — Хочешь, я публично признаю, что два не равно одному?
— Теперь уже не поможет.
Через два дня в «Нью-Йорк Таймс» появилась статья под названием «Проблемы нашей системы образования — наследие республиканцев». Статья была посвящена инциденту в бруклинской математической школе. «Злосчастный эпизод, произошедший в Бруклине, — говорилось в статье, — является прямым результатом недостаточного финансирования наших школ в период администрации Буша. Если бы сегодня каждая школьная парта была оборудована современным компьютером с доступом к высокоскоростному интернету, ученики могли бы сами убедиться в том, что на самом деле два не равно одному».
Учителя уволили, и о нём больше никто не вспоминал. Говорили, что он запил и пошёл в частную женскую школу преподавать бокс. Тем временем, буря не стихала. Фирма «Оркин, Соркин и Дворкин» от имени родителей травмированных учеников возбудила гражданский иск против школы на сумму шесть миллионов долларов. После долгих переговоров с адвокатом школы стороны решили не доводить дело до суда и согласились на сумму в два миллиона. Из них полтора миллиона наличными причитались фирме «Оркин, Соркин и Дворкин» и полмиллиона — истцам, то есть родителям пострадавших учеников — в виде купонов на десятипроцентную скидку в местных супермаркетах.
Директор школы пригласил родителей на собрание.
— Дамы и господа! — сказал он. — Поздравляю вас с успешным завершением иска против школы. Ваша победа в этом процессе ещё раз подтверждает справедливость нашей системы правосудия. К сожалению, школа не располагает бюджетом, который позволил бы нам выплатить два миллиона долларов. Мы вынуждены будем объявить банкротство, закрыть школу и уволить учителей. Однако, если вы хотите, чтобы ваш ребёнок продолжал получать образование в нашей школе, вы можете взять на себя оплату иска, что составит восемьдесят тысяч долларов на каждую семью. Вопросы есть?
— Есть, — сказал мистер Брехман, — Нельзя ли разделить сумму иска пополам, с тем, чтобы один миллион оплатили родители и один — школа?
— Боюсь, что нет, — директор вздохнул. — Один миллион для школы так же недостижим, как два миллиона. Как видите, в данном случае, два таки равно одному. Ещё раз поздравляю с победой!
Аплодисментов не последовало.

Да 19 19

Ваши голоса очень важны и позволяют выявлять действительно полезные материалы, интересные широкому кругу профессионалов. При этом бесполезные или откровенно рекламные тексты будут скрываться от посетителей и поисковых систем (Яндекс, Google и т.п.).

Участники дискуссии: cygankov, Климушкин Владислав, Бозов Алексей, Новикова Валентина, nnnnnnnn, Шарапов Олег, Ермоленко Андрей, Коробов Евгений, Манойлов Сергей, +еще 1
  • 01 Июля 2014, 09:54 #

    Точно знаю, что нетеорема не выдумана и имеет свое образовательное значение. Эту нетеорему советские детишки (и я в том числе) решали в школе. Класс какой — не помню.

    Полагаю, что юридическое обрамление создано одним из русских писателей-эммигрантов, добывающих средства к существованию в условиях загнивающего капитализЬма.
    Но чем чёрт не шутит.)))

    Хороший рассказ. Спасибо, Уважаемая Валентина Алексеевна.

    +4
  • 01 Июля 2014, 11:26 #

    Мне известно как минимум 4 доказательства тому, что 2х2=5 (ой! :x)

    +5
  • 01 Июля 2014, 12:10 #

    Интересно, а адвокаты были русскими?

    +4
  • 01 Июля 2014, 21:11 #

    Пошла детей озадачу... :D О результатах обещаю рассказать!!!
    Спасибо за отличный рассказ!

    +1
  • 02 Июля 2014, 08:11 #

    Дети легко и непринужденно нашли ошибку вот здесь 
    Он написал: a x a = a х b, то есть a2 = ab. Класс молчал.
    — Отнимаем от обеих частей уравнения «бэ»-квадрат, — сказал учитель и написал: a2 — b2 = ab — b2. Класс молчал.

    Учитывая «глубину» моих познаний в математике, я, переписывая задание, написала не «а квадрат», а «2а», в чем тут же была уличена.:D

    Однако задачка осталась не решенной, сегодня будем ждать подмоги выпускников специализированного «физматического» класса(blush) 

    +1
    • 02 Июля 2014, 08:36 #

      тут же была уличена.
      А Вы еще  сердились на своих детей в  комментарии в книжной группе —  вон они у вас какие сообразительные! Мои про алгебру уже и не вспоминают… Все же интересно, что скажет Ваша «подмога» )

      0
      • 02 Июля 2014, 09:08 #

        Да ладно вам, кто там сердился)))) Подмога спит ещё, к вечеру будем устраивать мозговой штурм.
        На заданный мне прямой вопрос: «Мама, А ТЫ САМА-ТО НАШЛА ошибку»? пришлось честно признаться, что у меня был бонус в виде готового ответа.:)

        +1
  • 02 Июля 2014, 13:22 #

    Поздравляю вас с успешным завершением иска против школы. Ваша победа в этом процессе ещё раз подтверждает справедливость нашей системы правосудия.Вот кто был настоящий адвокат!

    +1
  • 02 Июля 2014, 15:56 #

    Уважаемые коллеги, докладываю: ошибка найдена за 5 секунд. Цитирую «физмат»:
    «Так нельзя же тут сокращать, потому что если а = в, то а — в равно 0. Сокращение — это деление, а делить на 0 нельзя. В чем тут сложность?»

    Да здравствует наше образование, не уничтоженное даже ЕГЭ!!!

    P.S. Если честно, думала, что это невозможно сделать (ошибку найти)...

    +1
  • 02 Июля 2014, 17:05 #

    Уважаемая Валентина Алексеевна, очень понравилась история, поднялось настроение:) 

    +1
  • 02 Июля 2014, 21:21 #

    Дорогие коллеги, я рада, что вам всем понравилось, и что у вас поднялось настроение  (F)

    +1
  • 13 Июля 2014, 20:38 #

    Ювенальную юстицию еще привлечь надо )))

    +1

Да 19 19

Ваши голоса очень важны и позволяют выявлять действительно полезные материалы, интересные широкому кругу профессионалов. При этом бесполезные или откровенно рекламные тексты будут скрываться от посетителей и поисковых систем (Яндекс, Google и т.п.).

Для комментирования необходимо Авторизоваться или Зарегистрироваться

Ваши персональные заметки к публикации (видны только вам)

Рейтинг публикации: «2 = 1 ... или чудеса демократии ))))» 3 звезд из 5 на основе 19 оценок.
Скоро здесь появится описание

Свежие комментарии